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Abstract— Social navigation is a topic with enormous interest
in autonomous robotics. Robots are gradually being used in
human environments, working individually or collaborating
with humans in their daily tasks. Robots in these scenarios
have to be able to behave in a socially acceptable way and,
for this reason, the way in which robots move has to adapt to
humans and context. Proxemics has been extensively studied
with the aim of improving social navigation. However, these
works do not take into account that, in several situations, the
personal space of the humans depends on the context (e.g.,
this human space is not the same in a narrow corridor than
in a wide room). This work proposes the definition of an
adaptive and flexible space density function that allows, on the
one hand, to describe the comfort space of individuals during
an interaction and, on the other hand, dynamically adapt its
value in terms of the space that surrounds this interaction. In
order to validate the performance, this article describes a set of
simulated experiments where the robustness and improvements
of the approach are tested in different environments.

I. INTRODUCTION

It seems unthinkable a future world without robots work-
ing directly with humans at home, offices or hospitals. In
recent years, social robotics has experienced remarkable
growth, but there are still many open problems, such as
human-robot interaction, affective behavior or human aware
navigation among others.

In particular, human-centered navigation, also named so-
cial navigation, is nowadays a topic of growing interest. In
[1] authors describe the problem of human-centered robot
navigation as an evolution from metric mapping, semantic
mapping, social mapping, and finally, behavioral mapping.
In each of these phases or stages, the robot expands its
knowledge about the human-populated environment, from
the information of its own external sensors (metric map),
to the behavior that is specified with each entity or groups
of entities on the map (behavioral map).

In this regard social navigation is usually studied as a so-
cial mapping problem: most approaches address the problem
of social mapping by modeling the comfort space of the
human being, which is usually is based on the well-known
theories on proxemics [2]. According to these theories, in
previous works such as [3] or [4], a spatial density function
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Extremadura, 10003 Cáceres, Spain. pnuntru@unex.es

2School of Engineering and Applied Science, Aston University, Birm-
ingham, United Kingdom.

(a) (b)

Fig. 1: The robot has to choose the best route and navigate
in typical scenarios by using its social rules (a) office envi-
ronment composed of two rooms; and (b) narrow corridor.

that allows defining comfort zones around people was pro-
posed. This function provides for a mathematical model to
cluster people in the environment and defines spaces where
robot navigation is forbidden. Similar to other works in the
literature, this personal space is fixed and does not depend
on the spatial context and human intention.

Suppose the cases illustrated in Fig. 1. Do they represent
the same situation? In both images, the robot must socially
navigate in human-populated scenarios from its initial po-
sition to the target. However, spatial context is different.
Fig. 1a shows a typical office environment with two rooms
and different objects placed on it. In this situation, robot
plans a social path taking into account the personal spaces
(comfort zones), and it is expected that the mobile platform
successfully navigates to the target. By applying this same
idea in the scenario described in Fig. 1b, a blocked path is
built in the corridor. In human-human interaction, without
dialogue, humans can contract its comfort areas if the final
goal is to cross. Thus, it would be interesting if the robot also
can adapt its personal spaces in a flexible and automatic way
in order to navigate without dialogue.

The main contribution of this work, which extends the
previous one described in [3], is the proposal of an adaptive
and flexible spatial density function for context-aware
social mapping. The main difference between this previous
work is that this new function allows to: i) describe the
comfort zones of individuals during an interaction; and ii)
dynamically adapt its parameters depending on the spatial
context and human intention.

This paper is organized as follows: after discussing known
approaches to human-centered navigation in Section II, Sec-
tion III presents the cognitive architecture CORTEX, which



consists of a set of software agents for implementing com-
plex robotic tasks, such as human and object perception or
robot navigation. In Section IV an overview of the proposed
flexible and adaptive spatial density model is described.
Section V points out the experimental results, and finally,
Section VI describes the conclusions and future work of the
approach.

II. RELATED WORK

Most of classical robot navigation algorithms have con-
sidered all obstacles of similar relevance, including people.
Social robots, on the contrary, must consider humans special
entities, evaluating their level of comfort with respect to
the robot’s path. The social robot navigation problem has
been extensively studied in the last years and different
approaches have been proposed ([5], [6] and more recently
[7] are interesting reviews for readers). The concept of social
mapping, as was described in [8], was introduced to define
personal spaces that model socially acceptable behaviors for
robots during navigation: the problem of human-aware robot
navigation must consider factors like human safety, comfort,
sociability and /or naturalness [5].

When a social robot plans the best route in human-
populated scenarios, it must avoid passing between people
talking or crossing very close to a person. In order to manage
the shared space between humans and robots, different
works in the literature have demonstrated that the same
proxemic areas that exist in human-human interaction can
also be applied to human-robot interaction scenarios [9],
[10], [11]. Under this prism, the notion of personal space
model has been incorporated in the path planning step in
order to create acceptable behaviours for robots during their
navigation (human avoiding, social space or social path-
planning behaviors). Authors in [12], propose a framework
which is able to model context-dependent human spatial
interactions, encoded in the form of a social map. This social
map is obtained by solving a learning problem using Kernel
Principal Component Analysis (KPCA), and later the social
borders are calculated as isocontours of the learned implicit
function. In [13] it is proposed a perceptual model that takes
into account the relative pose between robot and human, the
human gestures and the speech volume for building the social
space. Recently, a human-centered robot navigation strategy
where the human space is modeled according to proxemics
theory was presented in [14].

In most real-world scenarios, humans in the environment
are interacting with each other. In [3], also based on the
proxemics, an adaptive spatial density function was defined
for clustering groups of people, which later define forbid-
den spaces for robot’s navigation. Most works based on
proxemics, do not take into account that these social zones
often depend on the human intentions and the environment
(e.g., if human want to cross social robot - human intention
- in a narrow corridor -environment-, comfort area must
reduce). This idea was briefly described in [1], where authors
extended the previous work [12] and suggested a skew-
normal probability density in order to model the social

space. The proposed approach goes further and it defines
a new spatial density function that extends the previous
work [3], [4] in order to satisfy these real scenarios. The
proposal uses a flexible mathematical model based upon the
use of a modified two-dimensional Gaussian function [15]
to dynamically model the personal space of an individual
adapting its shape to the spatial context. The model can
be incorporated in any navigation architecture in order to
socially navigate among humans.

III. DEEP STATE REPRESENTATION AND AGENTS

Previously to the description of the proposal, the cognitive
architecture CORTEX is briefly described [16]. Current
social robotics systems are getting more and more com-
plex: different robot skills are needed in order to achieve
typical tasks. The robotics cognitive architecture CORTEX
is defined structurally as a configuration of software agents
connected through a shared representation. This shared rep-
resentation was first-time defined in [16], as a directed multi-
labelled graph where nodes represent symbolic or geometric
entities and edges represent symbolic and geometric rela-
tionships.

An agent within CORTEX is defined as a computational
entity in charge of a well-defined functionality, whether it
be reactive, deliberative of hybrid, that interacts with other
agents inside a well-defined framework, to enact a larger sys-
tem [16]. In CORTEX, higher-level agents define the classic
functionalities or skills of cognitive robotics architectures,
such as navigation, manipulation, person perception, object
perception, dialogue, reasoning, planning, symbolic learning
or executing. In this paper, different specific agents within
CORTEX are involved. First, in the higher layer of the
architecture, the robot must have the capability of detect-
ing objects in the path and updating the symbolic model
accordingly. Additionally, the skill of detecting humans is
also mandatory because robots need to know about humans
to get commands, avoid collisions and provide feedback. The
final and most important agent for social navigation is the
one implementing the navigation algorithms. It implements
the path-planning, localization and SLAM algorithms, among
others. Fig. 2, illustrates the current CORTEX cognitive
architecture [16].

IV. PROPOSED APPROACH

The description of the proposal follows the next steps:
i) detecting and tracking humans in the environment; ii)
Personal space modeling by using an asymmetric Gaussian
[15]; and iii) adapting the personal space associated to each
person to human intention and spatial context.

A. People detection and tracking

Human detection and tracking is one of the most difficult
problem in robotics himself, especially in complex real world
scenes that commonly involve multiple people. Considering
S ⊂ R2 the space of the global map, a human i is represented
by its pose (position and orientation), hi = (xi yi θi)

T , being
(xi yi)

T ∈ S and θi ∈ [0, 2π). In this work is assumed



Fig. 2: Main agents within CORTEX involved in this pro-
posal are highlighted in red. A more detailed description
about CORTEX and DSR can be found in [16].

that human pose is detected and tracked by robot perception
system at real time (i.e., human recognition agent [16]).

B. Personal space modeling

In order to model the personal space of each individual,
an asymmetric 2-dimensional Gaussian function is used [15].
This function associates the distance between a point p =
(x y)T ∈ S and the person’s position, hi, with a real value
gi ∈ [0, 1]. The expression for the function cost is

ghi(x, y) = exp−(k1(x−xi)
2+k2(x−xi)(y−yi)+k3(y−yi)

2) (1)

being k1, k2 and k3 the coefficients used to take into account
the rotation of the function βi, defined by the relations
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where σs is the variance to the sides (βi ± π/2 direction)
and represents the variance along the βi direction (σh) or
the variance to the rear (σr) (see [15]). The cost function is
aligned to the person’s heading, that is, θi, and normalized
to 1. By varying σs, σh and σr the shape of the personal
space model can be easily modified.

C. Environment-dependent personal space modeling

Once the personal space ghi(x, y) is defined for each
human hi, next stage involves the adaptation of the Gaussian
shape to the context of the interaction and also to the
environment. First, the proposal evaluates distances from
human pose hi = (xh, yh, θh) to walls in four different
orientations θi=(0, π/2, π, 3π/2) being θi=0 the same as the
orientation of the person. Then, for each distance, the algo-
rithm evaluates if the robot is able to navigate in this space.
If not, the human adapts the comfort space by varying the
corresponding variance of the asymmetric Gaussian function
σ (i.e., σs, σh and/or σr). This algorithm is detailed next:

(a) (b)

Fig. 3: Description of the method for measuring distances
between human and walls. (a) The intersection between the
walls and the lines S1 and S2 define distances di; and (b)
distances used in the proposed work in order to adapt the
personal space to the environment.

1) Calculation of the distance to walls: The object per-
ception agent in CORTEX is in charge of recognizing and
estimating the pose of objects in the environment [16]. For
each object detected by the robot, the agent defines a new
node in the DSR, and saves not only its pose but also
its shape (e.g., sphere, cylinder, plane, cube, etc). On the
contrary, rooms are assumed to be known by the robot,
and they are defined as nodes in the DSR. These nodes
are characterized by the set of walls (planes) that describe
the room. The robot is always localised in the environment
thanks to the navigation agent in CORTEX.

If a human hi is inside a room or a corridor, the algorithm
evaluates the distance from human position to walls. First,
Let Ri = {ω1, ω2, ...ωn} be the room where person hi is
located, being ωk the wall k that composes the complete
room (e.g., a corridor has a minimum of two walls, while on
the contrary in a typical room there are four different walls).
Each wall ωk is described by a plane pωk ∈ R3 referenced
to the robot pose (origin of the reference frame).

In order to measure distances to each wall, the proposed
algorithm generates two different straight lines, S1 and S2,
being Sj defined as Sj = (ρ, α)j , where ρ is the length of the
normal drawn from the origin (i.e., robot) to the line, which
subtend an angle α with the positive direction of x-axis. In
Fig. 3a is shown a human located in a room R composed of
four walls R1 = {ω1, ω2, ω3, ω4} and where S1 = (ρ, α)1
is also drawn. Next, intersection point between S1 (and S2)
and the plane pωk define the distance dk from the human
position to ωk. In Fig. 3a four different distances are shown:
line S1 defines two different distances, d1 and d3, while S2

defines the distances d2 and d4 (intersection between S2 and
walls ω2 and ω4, respectively). The set of all the distances
from human to walls defines the distance vector dT .

2) Evaluation of the spatial context: Once the distance
vector dT has been calculated, the next step is to evaluate if
the personal space must adapt its shape to the spatial context.
Let dr be the diameter of the robot plus a safety margin.
Besides, let dmin and dmax be the minimum and maximum
distances that define the comfort zone, respectively. These
values are presented in 3b as circumferences with center
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(b)

Fig. 4: Evaluation of the spatial context in a typical narrow
corridor. (a) Four bars associated to each distance di are
drawn. Distance dsi identify the need of modifying the
comfort zone. (b) ds2 and ds3 involve a modification of the
personal space in this scenario.

hi(x, y) and radius dmin and dmax. For each di ∈ dT , the
proposed method calculates the distance ds:

dsi = di − dr (2)

Let’s consider different values of dsi . If dmin ≤ dsi ≤
dmax, it is need to adjust the comfort area in order to allows
robot navigation. On the contrary, if dsi ≤ dmin, robot is
unable to navigate in this orientation. Finally, if dsi ≥ dmax,
there is no need to modify the shape of the personal space.
Fig. 4a graphically describes the evaluation of the spatial
context. Four bars, associated to each distance di ∈ dT , are
shown. For each di, dsi is also drawn. Only ds2 and ds3
involve a modification of the personal space. In Fig. 4b, the
new Gaussian is presented after consider the spatial context
of the human-robot interaction.

3) Environment-dependent personal space: In this stage
the personal space model is adapted to the spatial-context.
As was described in IV-B, the model used in this approach is
an asymmetric Gaussian ghi(x, y) defined by σs, σh and σr.
By varying some of these values, ghi(x, y) adapts its shape
to the environment. Let g′hi(x, y) be the new model, where
now σs, σh and σr are dependent of the spatial context (i.e.,
σ(ds)). This dependence is modeled as non-linear regression
σ(ds) = a · dsb, being a and b parameters that define the
shape of the curve and the magnitude of the σ(ds) value.
Finally, this personal space describes a region where robots’
navigation is forbidden, such was described in [3].

V. EXPERIMENTS

To evaluate the performance of the proposed algorithm,
firstly a set of parameters has to be tuned such that the
algorithm adapts the personal space to the spatial context. A
set of simulated scenarios were used to validate the results of

Fig. 5: Power regression used to model the dependence
between sigma and the distance to the sides, back and front.

the proposed system. The algorithms have been developed in
C++ software and the benchmark tests have been performed
on a PC with processor Intel Core i5 2.4GHz with 4Gb of
DDR3 RAM and GNU-Linux Ubuntu 16.10.

A. Adaptive and flexible spatial density function assessment

The proposed system has several parameters that have
to be tuned to properly adjust the flexible and adaptive
spatial density function to the spatial context and the people-
clustering algorithm.
• a and b, from σ(ds) = a · dbs: parameters that define

the shape of the curve and the magnitude of the σ(ds)
value.

• dl: the maximum Euclidean distance between con-
secutive vertices in the polyline. A specific value is
proposed.

• δ: the density threshold. The value proposed depends
how the humans are interacting (see the formations
proposed in [17]).

The a and b parameters have been chosen as the coefficient
that better fit the data to the curve giving by the expression
σ = a · dbs. A set of σh values are used in order to get the
corresponding contours of the asymmetric gaussian gh(x, y)
(see Eq. (1)). By fixing the height of the cost function, these
contours define different distances as is shown in Fig. 5.
This same experiments have been made for σr and σs with
identical results. From these data, a = 1.2 and b = −0.976,
where R2 = 0, 97.

The distance threshold parameter dl allows adjusting the
density of vertices in the polyline. The smaller the value of
dl the higher the detail of the shape of the forbidden area.
In order to choose an appropriate dl value, several simulated
experiments with different individuals were conducted. The
tests showed that below 10cm approximately, decreasing the
value of the parameter did not considerably affect the shape
of the resulting forbidden area. The conclusion drawn from
the experiments is that dl can be safely fixed to 10cm.

B. Evaluation of the proposal

1) Validation of the flexible spatial density function:
In order to evaluate the proposal, firstly a basic simulated
scenario has been created. This consists of a square room
without objects, with dimensions 5m×5m and the presence
of a human. This room has mobile walls, in that way it is
possible to reduce the distances from the human to each



wall. Fig. 6 shows the results of the proposed algorithm for
adapting the personal space to the spatial context. In Fig. 6a,
four different tests are illustrated, where the distance to the
wall in front of the person is increased (from left to the right).
The contour map of the personal space is shown in Fig.
6a, where is drawn as the gaussian function g′h(x, y) adapts
correctly to the context. Results are also presented in Table
I for the original cost function g′h(x, y) and for the function
g′h(x, y), being dr = 0, 8m and dmin and dmax equal to
0,6m and 1,3m, respectively. In this table is also indicated
if the robot crosses between the human and the wall. As is
shown in Table I, the flexible spatial density function g′h(x, y)
adapts correctly to the spatial context. Similar results are
illustrated in Fig. 6b and Fig. 6c and described in Table II
(being dr = 0, 8m and dmin and dmax equal to 0,3m and
0,6m, respectively) and Table III (where dr = 0, 8m and
dmin and dmax equal to 0,5m and 1m, respectively).

TABLE I: Comparative results of the cost function defined
in [3] and the proposed in this paper, by varying the distance
to the wall in front of the person.

Heading
gh(x,y) g’h(x,y)

d3 ds cross? d3 ds d′s σh cross?
2,5 1,7 YES 2,5 1,7 1,3 1 YES

2,05 1,25 NO 2,05 1,25 1,2 1,05 YES
1,95 1,15 NO 1,95 1,15 1,1 1,10 YES
1,85 1,05 NO 1,85 1,05 1 1,21 YES
1,75 0,95 NO 1,75 0,95 0,9 1,34 YES
1,65 0,85 NO 1,65 0,85 0,8 1,50 YES
1,55 0,75 NO 1,55 0,75 0,7 1,71 YES
1,45 0,65 NO 1,45 0,65 0,6 1,99 YES
1,35 0,55 NO 1,35 0,55 1,3 1,00 NO

TABLE II: Comparative results of the cost functions by
varying the distance to the wall to the right of the person.

Sides
gh(x,y) g’h(x,y)

d2 ds cross? d2 ds d′s σr cross?
1,9 1,1 YES 1,9 0,9 1 1,33* YES
1,8 1 NO 1,8 0,85 0,95 1,05 YES
1,7 0,9 NO 1,7 0,85 0,85 1,41 YES
1,6 0,8 NO 1,6 0,85 0,75 1,60 YES
1,5 0,7 NO 1,5 0,85 0,65 1,84 YES
1,4 0,6 NO 1,4 0,85 0,55 2,16 YES
1,3 0,5 NO 1,3 - 1** 1,33 NO

TABLE III: Comparative results of the cost functions by
varying the distance to the wall to the rear of the person.

Rear
gh(x,y) g’h(x,y)

d1 ds cross? d1 ds d′s σr cross?
1,5 0,7 YES 1,5 0,7 0,85 1 YES
1,4 0,6 NO 1,4 0,6 0,55 1,05 YES
1,3 0,5 NO 1,3 0,5 0,45 2,63 YES
1,2 0,4 NO 1,2 0,4 0,35 3,36 YES
1,1 0,3 NO 1,1 0,3 0,6* 2,00 NO

2) Validation of the social mapping in two use cases:
The proposal has also been evaluated in two use cases: i)
a person who crosses a robot in a corridor where there are
also objects, and ii) a robot that accompanies a person in an
apartment with objects. In both experiments the adaptation
of the personal space has been validated, as well as the free
space for robot navigation. A comparative study with the
original spatial density model has been included. These two
use cases are drawn in Fig. 7. Three different humans’ poses

are used in the experiments, as is marked in Fig. 7a and Fig.
7b. For each pose, the distance vector dT , σ′h, σ′s and σ′r
(and its original values) are provided. Table IV describes the
results for the use case defined in Fig. 7a. As is shown in
Table IV, in the three poses the personal space is correctly
adapted to the spatial context and the robot can use the free
space in its path planner algorithm. On the contrary, using the
original function the robot is blocked during its path. Similar
results are shown in Table V, where the improvements of the
algorithm using the proposed function are also shown.

TABLE IV: Results for the use case described in 7a.

gh(x, y) g′h(x, y)

dT σh σr σs cross? σ′h σ′r σ′s cross?
d1 = 1.5 YES YES

d2 =1 1 2 1,33 NO 1,84 2 1,33 NO

d3 =1.5 NO YES

d4 = * YES YES
d1 = 5,5 YES YES

d2 = 1,1 1 2 1,33 NO 1 2 2,16 NO

d3 = * YES YES

d4 = 1,4 NO YES
d1 = 5,5 YES YES

d2 =1,1 1 2 1,33 NO 1 2 1,33 NO

d3 = * YES YES

d4 = 2,4 YES YES

TABLE V: Results for the use case described in 7b.

gh(x, y) g′h(x, y)

dT σh σr σs cross? σ′h σ′r σ′s cross?
d1 = * YES YES

d2 = 1,41 1 2 1,33 NO 1,36 2 2,1 YES

d3 =1,73 NO YES

d4 =1,41 NO YES
d1 = 1,5 YES YES

d2 = 1,35 1 2 1,33 NO 1 2 2,3 YES

d3 = 2,89 YES YES

d4 = 0,38 NO NO
d1 =2,16 YES YES

d2 = 4,87 1 2 1,33 YES 1 2 1,55 YES

d3 = 3,25 YES YES

d4 = 1,62 NO YES

VI. CONCLUSIONS AND FUTURE WORK

This article presents a novel approach for context-aware
social mapping. This work extends the previous one de-
scribed in [3], where now it uses a flexible spatial density
model in order to automatically adapt the personal space to
spatial context and human intention. The proposal dynam-
ically describes the comfort zones for people in the robot
environment and it is independent of the navigation archi-
tecture. Experimental results demonstrate the improvements
and robustness of the approach for social mapping compared
to previous works [3].

Future research directions include the extension of the
methodology to deal with populated environments and the
interaction between humans and objects in the scene. This
methodology must be applied and validated in a real-world
scenario to study, under realistic conditions, the actual reac-
tion of human subjects regarding safety and discomfort.
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Fig. 6: Four different tests were conducted for each σh, σs and σr. Tests consist of varying the distance from human to the
corresponding wall. Distances (in meters) are drawn in the figure.

(a) (b)

Fig. 7: Two use cases are used in this validation: a) a person
who crosses the robot in a corridor; and b) a companion
robot moving around an apartment.
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